Solution Bank

Exercise 1C

1 a The critical values are given by

x-6 = 6x -5x = 6 $x = -\frac{6}{5}$ Or -(x-6) = 6x -7x = -6 $x = \frac{6}{7}$

Sketching y = |x - 6| and y = 6x gives

From the sketch, only $x = \frac{6}{7}$ is a valid critical value.

The solution is when the v-shaped graph is above the line So the solution is $x < \frac{6}{7}$

Solution Bank

1 b The critical values are given by

 $x - 3 = x^2$

 $x^2 - x + 3 = 0$

This has no solution as the discriminant is negative

Or

$$-(x-3) = x^{2}$$
$$x^{2} + x - 3 = 0$$
$$x = \frac{-1 \pm \sqrt{1+12}}{2} = \frac{-1}{2}$$

 $\frac{1\pm\sqrt{13}}{2}$ using the quadratic formula

Sketching y = |x-3| and $y = x^2$ gives

The solution is when y = |x - 3| is above $y = x^2$ So the solution is: $\frac{-1 - \sqrt{13}}{2} < x < \frac{-1 + \sqrt{13}}{2}$

Solution Bank

1 c The critical values are given by

(x-2)(x+6) = 9 $x^{2} + 4x - 12 = 9$ $x^{2} + 4x - 21 = 0$ (x+7)(x-3) = 0x = -7 or 3Or $-(x^2+4x-12)=9$ $x^{2} + 4x - 3 = 0$ $x = \frac{-4 \pm \sqrt{16 + 12}}{2} = \frac{-4 \pm 2\sqrt{7}}{2}$ $x = -2 \pm \sqrt{7}$

using the quadratic formula

Sketching y = |(x-3)(x+6)| and y = 9 gives

The solution is when y = |(x-3)(x+6)| is below the line y = 9So the solution is: $-7 < x < -2 - \sqrt{7}$ or $-2 + \sqrt{7} < x < 3$

Solution Bank

1 d The critical values are given by

2x + 1 = 32x = 2x = 1Or-(2x + 1) = 3-2x = 4x = -2

Sketching y = |2x+1| and y = 3 gives

The solution is when the v-shaped graph is above or on the line So the solution is $x \leq -2$ or $x \geq 1$

Solution Bank

1 e Rearranging gives |2x| > 3-xThe critical values are given by 2x = 3-x3x = 3x = 1Or -(2x) = 3-x

$$x = -3$$

Sketching y = |2x| and y = 3 - x gives

The solution is when the v-shaped graph is above the line So the solution is x < -3 or x > 1

Solution Bank

1 f Rearranging and simplifying gives

 $\frac{x+3}{|x|+1} < 2$ x+3 < 2|x|+2 because |x|+1 is always positive x+1 < |2x|

The critical values are given by

x+1 = 2x x = 1Or x+1 = -(2x) $x = -\frac{1}{3}$

Sketching y = x + 1 and y = |2x| gives

The solution is when the v-shaped graph is above the line So the solution is $x < -\frac{1}{3}$ or x > 1

Solution Bank

2 a y = |3x - 2|

This has a v-shaped graph with a minimum at $(\frac{2}{3}, 0)$. It crosses the y-axis at (0, 2)

y = 2x + 4

The graph is a straight line with a positive gradient that passes through (-2, 0) and (0, 4).

So the sketch of both functions is:

b The critical values are given by 3x-2 = 2x+4 x = 6Or -(3x-2) = 2x+4 5x = -2 $x = -\frac{2}{5}$

The solution is when the v-shaped graph is on or below the line So the solution in set notation is $\{x: -\frac{2}{5} \le x \le 6\}$

Solution Bank

3 a $y = |x^2 - 4|$

 $y = x^2 - 4$ is a quadratic with a positive x^2 coefficient with a minimum at (0, -4)

So the graph of the modulus of this function has the section of $y = x^2 - 4$ below the x-axis reflected in that axis and it touches the x-axis at (-2, 0) and (2, 0)

$$y = \frac{4}{x^2 - 1}$$

The graph has vertical asymptotes at x = -1 and x = 1. When -1 < x < 1, y < 0 and there is a local maximum at (0, -4). The graph does not cut the coordinate axes.

So the sketch of both functions is:

Solution Bank

3 b The critical values are given by

$$x^{2} - 4 = \frac{4}{x^{2} - 1}$$
$$(x^{2} - 4)(x^{2} - 1) = 4$$
$$x^{4} - 5x^{2} + 4 = 4$$
$$x^{2}(x^{2} - 5) = 0$$
$$x = 0, \pm \sqrt{5}$$

Or

$$-(x^{2}-4) = \frac{4}{x^{2}-1}$$
$$(x^{2}-4)(x^{2}-1) = -4$$
$$x^{4}-5x^{2}+8 = 0$$

Since the determinant of this equation is less than zero $(b^2 - 4ac = 5^2 - 4 \times 8 = -7)$, there are no roots to this equation.

From the sketch in part **a**, the solution is when the red graph is on or below the black graph. So the solution is $-\sqrt{5} \le x < -1$ or $1 < x \le \sqrt{5}$

In set notation this is $\{x: -\sqrt{5} \leq x < -1\} \cup \{x: 1 < x \leq \sqrt{5}\}$

Solution Bank

4 Rearranging and simplifying gives

 $\frac{3-x}{|x|+1} > 2$ 3-x > 2(|x|+1) because |x| + 1 is always positive

Sketching the graphs of y = 3 - x and y = 2(|x|+1) gives:

The critical values are given by 3-x=2x+2 3x=1 $x=\frac{1}{3}$ Or 3-x=-2x+2x=-1

The solution is when the line is above the v-shaped graph So the solution in set notation is $\{x: -1 < x < \frac{1}{3}\}$

Solution Bank

5 y = 1 - x

The graph is a straight line with a negative gradient that passes through (0, 1) and (1, 0).

$$y = \frac{x}{x+2}$$

$$y = \frac{x}{x+2} = \frac{x+2-2}{x+2} = 1 - \frac{2}{x+2}$$
 rearranging to see how the curve behaves as $x \to \infty$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 1 (as $x \to \pm \infty, y \to 1$) and a vertical asymptote at x = -2 (as $x \to -2$, $y \to \pm \infty$). The graph crosses the axes at (0, 0). When -2 < x < 0, y < 0.

So
$$y = \left| \frac{x}{x+2} \right|$$
 is the graph of $y = \frac{x}{x+2}$ but with the section $-2 < x < 0$ reflected in the x-axis

So the sketch of both curves is:

The critical values are given by

$$\frac{x}{x+2} = 1-x$$

$$x = (1-x)(x+2)$$

$$x = 2-x-x^{2}$$

$$x^{2} + 2x - 2 = 0$$

$$x = \frac{-2 \pm \sqrt{4+8}}{2} = \frac{-2 \pm \sqrt{12}}{2} = -1 \pm \sqrt{3}$$
Or
$$\begin{pmatrix} x \\ x \end{pmatrix} = 1 - x$$

using the quadratic formula

$$-\left(\frac{x}{x+2}\right) = 1-x$$

$$x = (x-1)(x+2)$$

$$x = x^{2} + x - 2$$

$$x^{2} = 2$$

$$x = \pm\sqrt{2}$$

From the sketch note that only $-\sqrt{2}$ is a valid critical value.

The solution is when the line is above the curve So the solution in set notation is $\{x: x < -1 - \sqrt{3}\} \cup \{x: -\sqrt{2} < x < -1 + \sqrt{3}\}$

Solution Bank

6 a $y = \frac{1}{x-a}$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = a (as $x \to a$, $y \to \pm \infty$). The graph crosses the *y*-axis at $\left(0, -\frac{1}{a}\right)$.

y = 4|x - a|

The graph is two line segments meeting at (a, 0). The graph cuts the y-axis at (0, 4a).

So the sketch of both curves is:

Note the sketch assumes a > 0. If a < 0, a similar sketch is obtained but with the right-hand branches of both curves cutting the *y*-axis.

Solution Bank

considered because the right-hand branch of V has the intersection.

Only this case needs to be

6 b $\frac{1}{x-a} = 4(x-a)$ $\frac{1}{4} = (x-a)^2$ $\pm \frac{1}{2} = x-a$ $x = a \pm \frac{1}{2}$

From the sketch in part **a**, only $x = a + \frac{1}{2}$ is a valid critical value.

The solution is when the v-shaped graph is above the curve So the solution is x < a or $x > a + \frac{1}{2}$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Solution Bank

7 Rearranging $\frac{4x}{|x|+2} < x$ 4x < x(|x|+2)as (|x|+2) is always positive 4x < x|x|+2x 2x < x|x|

The sketch of both curves is:

The critical values are given by

 $2x = x^{2}$ $x^{2} - 2x = 0$ x(x - 2) = 0x = 0, 2Or $2x = -x^{2}$ $x^{2} + 2x = 0$ x(x + 2) = 0x = 0, -2

The solution is when the line is below the curve So the solution is -2 < x < 0 or x > 2

Solution Bank

- **8** a The student has not checked whether the all the critical values are valid, i.e. that the values the student has calculated actually correspond to intersections of the graphs.
 - **b** $y = x^2 + x 8$

The curve is a quadratic graph with a positive x^2 coefficient, so it is a parabola and it has a minimum at (1, 0). The graph crosses the *y*-axis at (0, -8).

So the graph of $y = |x^2 + x - 8|$ will be the graph of $y = x^2 + x - 8$ but with the section of the latter curve that is below the x-axis reflected in the x-axis.

y = 4x + 2

The graph is a straight line with a positive gradient that passes through (0, 2) and $\left(-\frac{1}{2}, 0\right)$.

The sketch of both curves is:

The critical values are given by

$$x^{2} + x - 8 = 4x + 2$$
$$x^{2} - 3x - 10 = 0$$
$$(x - 5)(x + 2) = 0$$
$$x = -2, 5$$

From the sketch, only x = 5 is a valid critical value.

$$-x^{2} - x + 8 = 4x + 2$$
$$x^{2} + 5x - 6 = 0$$
$$(x + 6)(x - 1) = 0$$

x = -6, 1

From the sketch, only x = 1 is a valid critical value.

The solution is when the line is below the curve So the solution is 1 < x < 5

INTERNATIONAL A LEVEL

Further Pure Maths 2

Solution Bank

Challenge

a If (x + 1) is a factor then f(-1) = 0 by the factor theorem. $f(-1) = (-1)^3 + 3(-1)^2 - 13(-1) - 15$ = -1 + 3 + 13 - 15 = 16 - 16 = 0

b Since (x+1) is a factor, f(x) can be written as

$$f(x) = x^{3} + 3x^{2} - 13x - 15$$

= (x + 1)(x² + 2x - 15)
= (x + 1)(x + 5)(x - 3)

The graph of f(x) is a cubic, with a positive x^3 coefficient, so as $x \to \infty$, $y \to \infty$ and as $x \to -\infty$, $y \to -\infty$ and it cuts the x-axis at (-5, 0), (-1, 0) and (3, 0).

Solution Bank

Challenge

c Using the sketch in part **b**, the sketch of $y = |x^3 + 3x^2 - 13x - 15|$ with y = x + 5 is

The critical values are given by

$$(x+1)(x+5)(x-3) = x+5$$

 $(x+5)((x+1)(x-3)-1) = 0$
 $(x+5)(x^2-2x-4) = 0$
 $x = -5, \frac{2 \pm \sqrt{20}}{2}$
 $x = -5, 1 \pm \sqrt{5}$
Or

$$-(x+1)(x+5)(x-3) = x+5$$

(x+5)((x+1)(x-3)+1) = 0
(x+5)(x²-2x-2) = 0
$$x = -5, \frac{2 \pm \sqrt{12}}{2}$$

$$x = -5, 1 \pm \sqrt{3}$$

The solution is when the line is on or above the curve So the solution is x = -1, $1 - \sqrt{5} \le x \le 1 - \sqrt{3}$, $1 + \sqrt{3} \le x \le 1 + \sqrt{5}$ It can be written in set notation as

$$\left\{x: x = -5\right\} \cup \left\{x: 1 - \sqrt{5} \leqslant x \leqslant 1 - \sqrt{3}\right\} \cup \left\{x: 1 + \sqrt{3} \leqslant x \leqslant 1 + \sqrt{5}\right\}$$