Further Pure Maths 2

Exercise 1C

1 a The critical values are given by

$$
\begin{aligned}
x-6 & =6 x \\
-5 x & =6 \\
x & =-\frac{6}{5}
\end{aligned}
$$

Or

$$
\begin{aligned}
-(x-6) & =6 x \\
-7 x & =-6 \\
x & =\frac{6}{7}
\end{aligned}
$$

Sketching $y=|x-6|$ and $y=6 x$ gives

From the sketch, only $x=\frac{6}{7}$ is a valid critical value.
The solution is when the v -shaped graph is above the line So the solution is $x<\frac{6}{7}$

Further Pure Maths 2

1 b The critical values are given by

$$
\begin{aligned}
x-3 & =x^{2} \\
x^{2}-x+3 & =0
\end{aligned}
$$

This has no solution as the discriminant is negative
Or

$$
\begin{aligned}
-(x-3) & =x^{2} \\
x^{2}+x-3 & =0 \\
x & =\frac{-1 \pm \sqrt{1+12}}{2}=\frac{-1 \pm \sqrt{13}}{2} \quad \text { using the quadratic formula }
\end{aligned}
$$

Sketching $y=|x-3|$ and $y=x^{2}$ gives

The solution is when $y=|x-3|$ is above $y=x^{2}$
So the solution is: $\frac{-1-\sqrt{13}}{2}<x<\frac{-1+\sqrt{13}}{2}$

Further Pure Maths 2

1 c The critical values are given by

$$
\begin{aligned}
(x-2)(x+6) & =9 \\
x^{2}+4 x-12 & =9 \\
x^{2}+4 x-21 & =0 \\
(x+7)(x-3) & =0 \\
x & =-7 \text { or } 3
\end{aligned}
$$

Or

$$
\begin{array}{r}
-\left(x^{2}+4 x-12\right)=9 \\
x^{2}+4 x-3=0
\end{array}
$$

$$
x=\frac{-4 \pm \sqrt{16+12}}{2}=\frac{-4 \pm 2 \sqrt{7}}{2} \quad \text { using the quadratic formula }
$$

$$
x=-2 \pm \sqrt{7}
$$

Sketching $y=|(x-3)(x+6)|$ and $y=9$ gives

The solution is when $y=|(x-3)(x+6)|$ is below the line $y=9$
So the solution is: $-7<x<-2-\sqrt{7}$ or $-2+\sqrt{7}<x<3$

Further Pure Maths 2

1 d The critical values are given by

$$
\begin{aligned}
2 x+1 & =3 \\
2 x & =2 \\
x & =1
\end{aligned}
$$

Or

$$
\begin{aligned}
-(2 x+1) & =3 \\
-2 x & =4 \\
x & =-2
\end{aligned}
$$

Sketching $y=|2 x+1|$ and $y=3$ gives

The solution is when the v -shaped graph is above or on the line So the solution is $x \leqslant-2$ or $x \geqslant 1$

Further Pure Maths 2

1 e Rearranging gives $|2 x|>3-x$
The critical values are given by

$$
\begin{aligned}
& \begin{array}{l}
2 x=3-x \\
3 x=3 \\
x
\end{array}=1 \\
& \text { Or } \\
& -(2 x)=3-x \\
& x=-3
\end{aligned}
$$

Sketching $y=|2 x|$ and $y=3-x$ gives

The solution is when the v -shaped graph is above the line So the solution is $x<-3$ or $x>1$

Further Pure Maths 2

1 f Rearranging and simplifying gives
$\frac{x+3}{|x|+1}<2$
$x+3<2|x|+2 \quad$ because $|x|+1$ is always positive
$x+1<|2 x|$

The critical values are given by

$$
\begin{aligned}
x+1 & =2 x \\
x & =1
\end{aligned}
$$

Or

$$
\begin{aligned}
x+1 & =-(2 x) \\
x & =-\frac{1}{3}
\end{aligned}
$$

Sketching $y=x+1$ and $y=|2 x|$ gives

The solution is when the v -shaped graph is above the line So the solution is $x<-\frac{1}{3}$ or $x>1$

Further Pure Maths 2

2 a $y=|3 x-2|$
This has a v-shaped graph with a minimum at $\left(\frac{2}{3}, 0\right)$. It crosses the y-axis at $(0,2)$
$y=2 x+4$
The graph is a straight line with a positive gradient that passes through $(-2,0)$ and $(0,4)$.
So the sketch of both functions is:

b The critical values are given by

$$
\begin{aligned}
3 x-2 & =2 x+4 \\
x & =6
\end{aligned}
$$

Or

$$
\begin{aligned}
-(3 x-2) & =2 x+4 \\
5 x & =-2 \\
x & =-\frac{2}{5}
\end{aligned}
$$

The solution is when the v -shaped graph is on or below the line
So the solution in set notation is $\left\{x:-\frac{2}{5} \leqslant x \leqslant 6\right\}$

Further Pure Maths 2

3 a $y=\left|x^{2}-4\right|$
$y=x^{2}-4$ is a quadratic with a positive x^{2} coefficient with a minimum at $(0,-4)$
So the graph of the modulus of this function has the section of $y=x^{2}-4$ below the x-axis reflected in that axis and it touches the x -axis at $(-2,0)$ and $(2,0)$
$y=\frac{4}{x^{2}-1}$
The graph has vertical asymptotes at $x=-1$ and $x=1$. When $-1<x<1, y<0$ and there is a local maximum at $(0,-4)$. The graph does not cut the coordinate axes.

So the sketch of both functions is:

Further Pure Maths 2

3 b The critical values are given by

$$
\begin{aligned}
x^{2}-4 & =\frac{4}{x^{2}-1} \\
\left(x^{2}-4\right)\left(x^{2}-1\right) & =4 \\
x^{4}-5 x^{2}+4 & =4 \\
x^{2}\left(x^{2}-5\right) & =0 \\
x & =0, \pm \sqrt{5}
\end{aligned}
$$

Or

$$
\begin{aligned}
-\left(x^{2}-4\right) & =\frac{4}{x^{2}-1} \\
\left(x^{2}-4\right)\left(x^{2}-1\right) & =-4 \\
x^{4}-5 x^{2}+8 & =0
\end{aligned}
$$

Since the determinant of this equation is less than zero $\left(b^{2}-4 a c=5^{2}-4 \times 8=-7\right)$, there are no roots to this equation.

From the sketch in part a, the solution is when the red graph is on or below the black graph.
So the solution is $-\sqrt{5} \leqslant x<-1$ or $1<x \leqslant \sqrt{5}$
In set notation this is $\{x:-\sqrt{5} \leqslant x<-1\} \cup\{x: 1<x \leqslant \sqrt{5}\}$

Further Pure Maths 2

4 Rearranging and simplifying gives
$\frac{3-x}{|x|+1}>2$
$3-x>2(|x|+1) \quad$ because $|x|+1$ is always positive
Sketching the graphs of $y=3-x$ and $y=2(|x|+1)$ gives:

The critical values are given by

$$
\begin{aligned}
3-x & =2 x+2 \\
3 x & =1 \\
x & =\frac{1}{3} \\
\text { Or } & \\
3-x & =-2 x+2 \\
x & =-1
\end{aligned}
$$

The solution is when the line is above the v -shaped graph So the solution in set notation is $\left\{x:-1<x<\frac{1}{3}\right\}$

Further Pure Maths 2

$5 y=1-x$
The graph is a straight line with a negative gradient that passes through $(0,1)$ and $(1,0)$.
$y=\frac{x}{x+2}$
$y=\frac{x}{x+2}=\frac{x+2-2}{x+2}=1-\frac{2}{x+2} \quad$ rearranging to see how the curve behaves as $x \rightarrow \infty$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=1$ (as $x \rightarrow \pm \infty, y \rightarrow 1$) and a vertical asymptote at $x=-2$ (as $x \rightarrow-2, y \rightarrow \pm \infty)$. The graph crosses the axes at $(0,0)$.
When $-2<x<0, y<0$.
So $y=\left|\frac{x}{x+2}\right|$ is the graph of $y=\frac{x}{x+2}$ but with the section $-2<x<0$ reflected in the x-axis
So the sketch of both curves is:

The critical values are given by

$$
\begin{aligned}
\frac{x}{x+2} & =1-x \\
x & =(1-x)(x+2) \\
x & =2-x-x^{2} \\
x^{2}+2 x-2 & =0
\end{aligned}
$$

$$
x=\frac{-2 \pm \sqrt{4+8}}{2}=\frac{-2 \pm \sqrt{12}}{2}=-1 \pm \sqrt{3} \quad \text { using the quadratic formula }
$$

Or

$$
\begin{aligned}
-\left(\frac{x}{x+2}\right) & =1-x \\
x & =(x-1)(x+2) \\
x & =x^{2}+x-2 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

From the sketch note that only $-\sqrt{2}$ is a valid critical value.
The solution is when the line is above the curve
So the solution in set notation is $\{x: x<-1-\sqrt{3}\} \cup\{x:-\sqrt{2}<x<-1+\sqrt{3}\}$

Further Pure Maths 2

6 a $y=\frac{1}{x-a}$
The curve is a reciprocal graph. There is a horizontal asymptote at $y=0$ (as $x \rightarrow \pm \infty, y \rightarrow 0$) and a vertical asymptote at $x=a($ as $x \rightarrow a, y \rightarrow \pm \infty)$. The graph crosses the y-axis at $\left(0,-\frac{1}{a}\right)$.
$y=4|x-a|$
The graph is two line segments meeting at $(a, 0)$. The graph cuts the y-axis at $(0,4 a)$.
So the sketch of both curves is:

Note the sketch assumes $a>0$. If $a<0$, a similar sketch is obtained but with the right-hand branches of both curves cutting the y-axis.

6 b

$$
\begin{aligned}
\frac{1}{x-a} & =4(x-a) \\
\frac{1}{4} & =(x-a)^{2} \\
\pm \frac{1}{2} & =x-a \\
x & =a \pm \frac{1}{2}
\end{aligned}
$$

From the sketch in part a, only $x=a+\frac{1}{2}$ is a valid critical value.
The solution is when the v -shaped graph is above the curve
So the solution is $x<a$ or $x>a+\frac{1}{2}$

Further Pure Maths 2

7 Rearranging
$\frac{4 x}{|x|+2}<x$
$4 x<x(|x|+2) \quad$ as $(|x|+2)$ is always positive
$4 x<x|x|+2 x$
$2 x<x|x|$
The sketch of both curves is:

The critical values are given by

$$
\begin{aligned}
2 x & =x^{2} \\
x^{2}-2 x & =0 \\
x(x-2) & =0 \\
x & =0,2
\end{aligned}
$$

Or

$$
\begin{aligned}
2 x & =-x^{2} \\
x^{2}+2 x & =0 \\
x(x+2) & =0 \\
x & =0,-2
\end{aligned}
$$

The solution is when the line is below the curve So the solution is $-2<x<0$ or $x>2$

Further Pure Maths 2

8 a The student has not checked whether the all the critical values are valid, i.e. that the values the student has calculated actually correspond to intersections of the graphs.
b $y=x^{2}+x-8$
The curve is a quadratic graph with a positive x^{2} coefficient, so it is a parabola and it has a minimum at $(1,0)$. The graph crosses the y-axis at $(0,-8)$.
So the graph of $y=\left|x^{2}+x-8\right|$ will be the graph of $y=x^{2}+x-8$ but with the section of the latter curve that is below the x-axis reflected in the x-axis.
$y=4 x+2$
The graph is a straight line with a positive gradient that passes through $(0,2)$ and $\left(-\frac{1}{2}, 0\right)$.
The sketch of both curves is:

The critical values are given by

$$
\begin{aligned}
x^{2}+x-8 & =4 x+2 \\
x^{2}-3 x-10 & =0 \\
(x-5)(x+2) & =0 \\
x & =-2,5
\end{aligned}
$$

From the sketch, only $x=5$ is a valid critical value.
Or

$$
\begin{aligned}
-x^{2}-x+8 & =4 x+2 \\
x^{2}+5 x-6 & =0 \\
(x+6)(x-1) & =0 \\
x & =-6,1
\end{aligned}
$$

From the sketch, only $x=1$ is a valid critical value.
The solution is when the line is below the curve
So the solution is $1<x<5$

Further Pure Maths 2

Challenge

a If $(x+1)$ is a factor then $\mathrm{f}(-1)=0$ by the factor theorem.

$$
\begin{aligned}
\mathrm{f}(-1) & =(-1)^{3}+3(-1)^{2}-13(-1)-15 \\
& =-1+3+13-15=16-16=0
\end{aligned}
$$

b Since $(x+1)$ is a factor, $\mathrm{f}(\mathrm{x})$ can be written as

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}+3 x^{2}-13 x-15 \\
& =(x+1)\left(x^{2}+2 x-15\right) \\
& =(x+1)(x+5)(x-3)
\end{aligned}
$$

The graph of $\mathrm{f}(\mathrm{x})$ is a cubic, with a positive x^{3} coefficient, so as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow-\infty, y \rightarrow-\infty$ and it cuts the x -axis at $(-5,0),(-1,0)$ and $(3,0)$.

So the sketch of $y=\mathrm{f}(x)$ is:

Further Pure Maths 2

Challenge

c Using the sketch in part \mathbf{b}, the sketch of $y=\left|x^{3}+3 x^{2}-13 x-15\right|$ with $y=x+5$ is

The critical values are given by

$$
\begin{aligned}
(x+1)(x+5)(x-3) & =x+5 \\
(x+5)((x+1)(x-3)-1) & =0 \\
(x+5)\left(x^{2}-2 x-4\right) & =0 \\
x & =-5, \frac{2 \pm \sqrt{20}}{2} \\
x & =-5,1 \pm \sqrt{5}
\end{aligned}
$$

Or

$$
\begin{aligned}
-(x+1)(x+5)(x-3) & =x+5 \\
(x+5)((x+1)(x-3)+1) & =0 \\
(x+5)\left(x^{2}-2 x-2\right) & =0 \\
x & =-5, \frac{2 \pm \sqrt{12}}{2} \\
x & =-5,1 \pm \sqrt{3}
\end{aligned}
$$

The solution is when the line is on or above the curve
So the solution is $x=-1,1-\sqrt{5} \leqslant x \leqslant 1-\sqrt{3}, 1+\sqrt{3} \leqslant x \leqslant 1+\sqrt{5}$
It can be written in set notation as

$$
\{x: x=-5\} \cup\{x: 1-\sqrt{5} \leqslant x \leqslant 1-\sqrt{3}\} \cup\{x: 1+\sqrt{3} \leqslant x \leqslant 1+\sqrt{5}\}
$$

